

Application – Microfluidic Cell Culture Devices

<u>Yi-Chung Tung, Ph.D.</u>
Assistant Research Fellow
Research Center for Applied Sciences
Academia Sinica, Taipei, Taiwan

Outline

- Introduction
- Microfluidic Actuation
- Microfluidic Devices
 - Computerized microfluidic device using PDMS channels and Braille display
 - Three-dimensional cell spheroid culture in PDMS microfluidic device
 - Microfluidic flow cytometry actuated by Braille Displays
- Conclusion and Future Work
- Acknowledgement

Cells

- Cells are the basic functional units of most living organisms.
- Cells sense and response to changes in their environment, and communicate with neighboring cells by releasing chemicals or by generating electrical signals.

In vitro Cell Culture

- in vivo Cell Study
 - Lack of fully understanding microenvironments
 - Difficult to control all biological parameters
 - Clinical operation required
- · in vitro Cell Culture
 - Well-defined microenvironments
 - Large number of samples available
 - Time-consuming for taking care of cells
 - Changing Media, Passaging etc.
 - Different from *in-vivo* environment

Microfluidic Devices

- Why Microfluidic Devices?
 - Unique properties (laminar flow, surface tension...)
 - Small sample volume and easy to scale up
 - Well-controlled microenvironments
 - Precise spatial and temporal control
 - Able to mimic the rich biochemical and biophysical complexity of the cellular microenvironment

Droplet-Based Passive Pumping

- Surface Tension Driven Flow
- Surface Tension (γ):
 Young-Lapalace Equation:

$$\Delta p = \gamma \left(\frac{1}{R_x} + \frac{1}{R_y} \right)$$

Where Δp is the pressure difference, γ is surface tension, R_x and R_y are radii of curvature in each of the axes that are parallel to the surface.

Water at 25°C, γ = 71.97 (dyn/cm)

Introduction - PDMS

- PDMS (Polydimethylsiloxane)
 - PDMS is durable, optically transparent, and inexpensive
 - PDMS can be patterned by Soft Lithography

PDMS Microfluidic Channel

Thermally Actuated Phase-Change Microfluidic Components

 Taking advantage of materials that exhibit large volumetric change during phase change (e.g. polyethylene glycol (PEG), and paraffin), temperature regulated active microfluidic components have been developed.

Shape Memory Alloy Actuators

 A shape memory alloy (SMA) is an alloy that "remembers" its shape, and can be returned to that shape after being deformed, by applying heat to the alloy.

Application – Cancer Cell Co-Culture Endothelial, osteoblast, and prostate cancer cell co-culture to mimic the in-vivo niche microenvironment Slower prostate cancer cell proliferation rate (doubling time: ~9 days) Endothelial cells proliferate, and osteoblast cells are quiescent

Single Embyroid Body Cell Counting • mES Cell (ES-D3): Hanging drop cell culture to form spheroid • Dissociated in Trypsin mixed with Syto 9 (50 μl) A B (100 μm) Peak Count: 283 Cell Count: 346 Time (minute)

Questions?

http://www.rcas.sinica.edu.tw/faculty/tungy.html

E-mail: tungy@gate.sinica.edu.tw