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Cells

» Cells are the basic functional units of most living
organisms.

» Cells sense and response to changes in their
environment, and communicate with neighboring
cells by releasing chemicals or by generating
electrical signals.
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In vitro Cell Culture

 in vivo Cell Study
— Lack of fully understanding microenvironments
— Difficult to control all biological parameters
— Clinical operation required

* jn vitro Cell Culture
— Well-defined microenvironments
— Large number of samples available

— Time-consuming for taking care of cells
» Changing Media, Passaging etc.
— Different from in-vivo environment




Microfluidic Devices

» Why Microfluidic Devices?
— Unique properties (laminar flow, surface tension...)
— Small sample volume and easy to scale up
— Well-controlled microenvironments
— Precise spatial and temporal control

— Able to mimic the rich biochemical and biophysical
complexity of the cellular microenvironment
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Microfluidic Actuation
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Droplet-Based Passive Pumping

 Surface Tension Driven Flow

» Surface Tension (y):
Young-Lapalace Equation:

R, R,

Where Ap is the pressure difference, yis surface
tension, R, and R, are radii of curvature in each of the
axes that are parallel to the surface.

Water at 25°C, y = 71.97 (dyn/cm)
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Actuation by External Magnetic Field

* Ferrofluid - a liquid which
becomes strongly polarised in the
presence of a
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Introduction - PDMS

PDMS (Polydimethylsiloxane)

— PDMS is durable, optically transparent, and
inexpensive

— PDMS can be patterned by Soft Lithography

Silicone PDMS Microfluidic Channel

PDMS Material Properties

Optical Transimission Curve of PDMS
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Introduction — Soft Lithography

Microcontact Printing
(uCP)

Replica Molding
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Deformation-Based Microfluidic Actuation

Planar
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Thermally Actuated Phase-Change Microfluidic Components

Taking advantage of materials that exhibit large
volumetric change during phase change (e.qg.
polyethylene glycol (PEG), and paraffin), temperature

regulated active microfluidic components have been
developed.
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Shape Memory Alloy Actuators

A shape memory alloy (SMA) is an alloy that
“remembers” its shape, and can be returned to that

shape after being deformed, by applying heat to the
alloy.




Computerized Microfluidic Device Using
PDMS Channels and Braille Display

Introduction — PDMS-Based Devices

 Applications
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Braille Display-Based Microfluidic Systems
Braille Display
Piezoelectric Actuation ‘ ﬁ
— Computer Programmable (USB)
— Low Power Consumption
— Fast Response

Braille Display-Based Microfluidic Systems

+ Advantages
Portable
Versatile
No Fluidic |
Fully Dispos
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Braille Display-Based Cell Culture

* Long-term culture for C2C12
myoblast cells (out of
incubators)

Cell Culture in Various Shear Stress Conditions

Endothelial Cell (EC) Culture under Various
Shear Stress Conditions — Temporal Patterns
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Cell Culture in Various Shear Stress Conditions

Shear Stress Magnitude:

| Small Pump |
) Large Pump

111

Time (h)

Angle of Orientation (degrees)

| Small Pump
1Large Pump

0 6 17 24

Time (h)

Shape Index, S|

Angle of Orientation (degrees)

Shape Index, SI

Time (h)

Shear Stress Frequency:

m025Hz
mO0.75 Hz
020Hz

24

Individually Programmable Cell Stretching
Microwell Arrays Actuated by a Braille Display

» Test various cell samples, culture medium, and stretching

conditions simultaneously
* Small cell sample required
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Individually Programmable Cell Stretching
Microwell Arrays Actuated by a Braille Display
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Three-Dimensional Cell Spheroid Culture in
PDMS Microfluidic Device
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Three-Dimensional Cell Culture - Spheroid

* Moving from cell monolayers to three-dimensional (3D) cultures is
motivated by the need to work with cellular models that better mimic the
environment of living tissues.

» For example, tumor spheroids have been widely used as an in vitro 3D
model to simulate the multicellular microenvironment when investigating
tumor cell physiology and responses to therapeutic agents.
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3D Spheroid Culture
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Spheroid Culture in a Microfluidic Device

» Dual-Layer Compartmentalized PDMS microfluidic Device
 Efficient formation of uniform-sized spheroids
+ Simple yet robust operation
» Capable of scaling up for high throughput screening
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Application — Embryoid Body (EB) Culture

» Appropriate morphology and embryo size are critical for the sequential
development stages of naturally conceived embryos.
* Mouse embryonic stem (ES) cells (ES-D3 cell line, ATCC)

Before Exposure to the Differentiation Medium

7 Days after Exposure to the Differentiation Medium




Application — Cancer Cell Co-Culture

* Endothelial, osteoblast, and prostate cancer cell co-culture to mimic the
in-vivo niche microenvironment

* Slower prostate cancer cell proliferation rate (doubling time: ~9 days)

* Endothelial cells proliferate, and osteoblast cells are quiescent
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Application — Cancer Cell Drug Test

* Human carcinoma cell that stably After 96 h Drug Treatment
express mesothelin (A431.H9) cell [ oastcels

* Drug test for commonly used
chemotherapy agent: Fluorouracil
(5-Fu) and Tirapazamine (TPZ)

* Cell viability test using Alamar
blue
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Flow Cytometry

» Rapid analysis of biological samples
— Disease diagnosis and monitoring
— Cell biology
— Toxicology
— Environmental monitoring
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Flow Cytometry

» Basic Operation of Flow Cytometer
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Device Design

B Glass Slide Hold-Down Clamp (3)
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Cell Viability after Loading

C2C12 Myoblast Cells Stained Using LIVE/DEAD Viability/

Cytotoxicity Kit

— Calcein AM for LIVE Cell (ex/em 494 nm/517 nm)
— Ethidium homodimer-1 (EthD-1) for DEAD Cell (ex/em 528 nm/617 nm)
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— Hypotonic DNA Stain:
» Sodium citrate
» Triton X-100
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* Cumulative Histogram Method
+ Wolbers et al., Electrophoresis, 2006, 27, 5073.
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Single Embyroid Body Cell Counting

+ mES Cell (ES-D3): Hanging drop cell culture to form spheroid

+ Dissociated in Trypsin mixed with Syto 9 (50 ul)

T T
Peak Count: 283
Cell Count: 346
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Integrated Biomedical Microdevices

® Precisely Control or Mimic the Rich Biochemical and Biophysical

Complexity of the Cellular Microenviroments.
e Cell Activity Monitoring and Observation.
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Future Work

HighrThroughp!
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3D Cell,Culture

Smaller Integrated Platforms, Easier Operation, Lower Cost,
Better Models in vitro, More Characterization Capabilities,
and Higher Throughput

Questions?
http://www.rcas.sinica.edu.tw/faculty/tungy.htmi

E-mail: tungy@gate.sinica.edu.tw
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